import face_recognition import PIL.Image import PIL.ImageDraw from pathlib import Path for filename in Path("./").glob("*.jpg"): # Load the jpg files into numpy arrays image = face_recognition.load_image_file(filename) # Generate the face encodings face_encodings = face_recognition.face_encodings(image) if len(face_encodings) == 0: # No faces found in the image. print("No faces were found in {}.".format(filename)) else: # Grab the first face encoding first_face_encoding = face_encodings[0] # Print the results print("Face encoding for {}\n".format(filename),first_face_encoding) # Find all facial features in all the faces in the image face_landmarks_list = face_recognition.face_landmarks(image) number_of_faces = len(face_landmarks_list) print("I found {} face(s) in this photograph.".format(number_of_faces)) # Load the image into a Python Image Library object so that we can draw on top of it and display it pil_image = PIL.Image.fromarray(image) # Create a PIL drawing object to be able to draw lines later draw = PIL.ImageDraw.Draw(pil_image) # Loop over each face for face_landmarks in face_landmarks_list: # Loop over each facial feature (eye, nose, mouth, lips, etc) for name, list_of_points in face_landmarks.items(): # Print the location of each facial feature in this image print("The {} in this face has the following points: {}".format(name, list_of_points)) # Let's trace out each facial feature in the image with a line! draw.line(list_of_points, fill="red", width=2) pil_image.show()
標籤: deep learning
Deep Learning Framrworks (深度學習軟體框架)
Deep Learning Frameworks (深度學習軟體框架)
目前以TensorFlow, Theano, Keras, Torch, Caffe為主。搭配硬體或GPU加速的架構 (像是NVIDIA CUDA等)。深度學習可以開發的領域目前集中在電腦視覺(從影像或視訊擷取資訊、臉部辨別、內容分析診斷等等)。
下面是目前主要的深度學習軟體框架:
Image Source: NVIDIA 閱讀全文 Deep Learning Framrworks (深度學習軟體框架)